68 research outputs found

    A Parallel Saturation Algorithm on Shared Memory Architectures

    Get PDF
    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core

    Design of 3D-Printed Titanium Compliant Mechanisms

    Get PDF
    This paper describes 3D-printed titanium compliant mechanisms for aerospace applications. It is meant as a primer to help engineers design compliant, multi-axis, printed parts that exhibit high performance. Topics covered include brief introductions to both compliant mechanism design and 3D printing in titanium, material and geometry considerations for 3D printing, modeling techniques, and case studies of both successful and unsuccessful part geometries. Key findings include recommended flexure geometries, minimum thicknesses, and general design guidelines for compliant printed parts that may not be obvious to the first time designer

    Tracing the Possible Root Causes for Fleeing Flamingos in Kenya’s Lake Nakuru National Park

    Get PDF
    A Fishbone diagram was used to identify possible root causes for the diminishing number of flamingos in Kenya’s Lake Nakuru by analyzing twelve authenticated articles published in 2007. Human activities at the lake’s catchment area particularly deforestation was found to be the major cause for the flamingo situation in the lake. Wanton destruction of vegetation at the Mau Forest Complex has caused rivers to dry up, therefore reducing the inflow of water into the lake. Due to negligible monetary benefits from tourism trickling down to host communities in Kenya, the poor population in Nakuru’s upstream strives to make ends meet through agriculture and exploitation of forest products, unaware of the detrimental impacts of their actions on the flamingos downstream that attracts over 200,000 tourists annually. This necessitates adoption of an integrated, sustainable development approach in planning and management of the resources. Keywords: Lake Nakuru; Tourism; Fleeing Flamingos; Sustainable development; Deforestation; Climate change; Pollutio

    Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits

    Get PDF
    A demultiplexer is an electronic circuit designed to separate two or more combined signals. We report on a demultiplexer architecture for bridging from the submicrometer dimensions of lithographic patterning to the nanometer-scale dimensions that can be achieved through nanofabrication methods for the selective addressing of ultrahigh-density nanowire circuits. Order log_2(N) large wires are required to address N nanowires, and the demultiplexer architecture is tolerant of low-precision manufacturing. This concept is experimentally demonstrated on submicrometer wires and on an array of 150 silicon nanowires patterned at nanowire widths of 13 nanometers and a pitch of 34 nanometers

    An African dilemma : pastoralists, conservationists and tourists - reconciling conflicting issues in Kenya

    Get PDF
    Kenya is facing irreconcilable tensions by competing interests from conservationists, tourism developers and pastoralists. Concerns arising from the well-being of flora and, in particular, fauna by conservationists; tourists and commercial tourism; and the increasingly restricted use of traditional lands and herding animals by pastoralist indigenous communities, have populated the discourse of land use in Kenya. In this paper, we look into the varying perceptions of each group of stakeholders and seek to analyse the current narrative that gives priority to wildlife protection and the commercial exploitation of wildlife through high-end tourism development to the detriment of the rights and interests of pastoralism. As pastoral land becomes more appropriated, our analysis shows that the antagonistic relationship between conservationism, commercial tourism and pastoralism is likely to deteriorate. We therefore propose a more participatory model of tourism development that will allow pastoralist communities to have a voice in the process

    Effect of milk protein and whey permeate in large quantity lipid-based nutrient supplement on linear growth and body composition among stunted children: A randomized 2 × 2 factorial trial in Uganda

    Get PDF
    Background: Despite possible benefits for growth, milk is costly to include in foods for undernourished children. Furthermore, the relative effects of different milk components, milk protein (MP), and whey permeate (WP) are unclear. We aimed to assess the effects of MP and WP in lipid-based nutrient supplement (LNS), and of LNS itself, on linear growth and body composition among stunted children. Methods and findings: We performed a randomized, double-blind, 2 × 2 factorial trial among 12 to 59 months old stunted children in Uganda. Children were randomized to 4 formulations of LNS with MP or soy protein isolate and WP or maltodextrin (100 g/day for 12 weeks) or no supplementation. Investigators and outcome assessors were blinded; however, participants were only blinded to the ingredients in LNS. Data were analyzed based on intention-to-treat (ITT) using linear mixed-effects models adjusted for age, sex, season, and site. Primary outcomes were change in height and knee-heel length, and secondary outcomes included body composition by bioimpedance analysis (ISRCTN13093195). Between February and September 2020, we enrolled 750 children with a median age of 30 (interquartile range 23 to 41) months, with mean (± standard deviation) height-for-age z-score (HAZ) −3.02 ± 0.74 and 12.7% (95) were breastfed. The 750 children were randomized to LNS (n = 600) with or without MP (n = 299 versus n = 301) and WP (n = 301 versus n = 299), or no supplementation (n = 150); 736 (98.1%), evenly distributed between groups, completed 12-week follow-up. Eleven serious adverse events occurred in 10 (1.3%) children, mainly hospitalization with malaria and anemia, all deemed unrelated to the intervention. Unsupplemented children had 0.06 (95% confidence interval, CI [0.02, 0.10]; p = 0.015) decline in HAZ, accompanied by 0.29 (95% CI [0.20, 0.39]; p < 0.001) kg/m2 increase in fat mass index (FMI), but 0.06 (95% CI [−0.002; 0.12]; p = 0.057) kg/m2 decline in fat-free mass index (FFMI). There were no interactions between MP and WP. The main effects of MP were 0.03 (95% CI [−0.10, 0.16]; p = 0.662) cm in height and 0.2 (95% CI [−0.3, 0.7]; p = 0.389) mm in knee-heel length. The main effects of WP were −0.08 (95% CI [−0.21, 0.05]; p = 220) cm and −0.2 (95% CI [−0.7; 0.3]; p = 403) mm, respectively. Interactions were found between WP and breastfeeding with respect to linear growth (p < 0.02), due to positive effects among breastfed and negative effects among non-breastfed children. Overall, LNS resulted in 0.56 (95% CI [0.42, 0.70]; p < 0.001) cm height increase, corresponding to 0.17 (95% CI [0.13, 0.21]; p < 0.001) HAZ increase, and 0.21 (95% CI [0.14, 0.28]; p < 0.001) kg weight increase, of which 76.5% (95% CI [61.9; 91.1]) was fat-free mass. Using height-adjusted indicators, LNS increased FFMI (0.07 kg/m2, 95% CI [0.0001; 0.13]; p = 0.049), but not FMI (0.01 kg/m2, 95% CI [−0.10, 0.12]; p = 0.800). Main limitations were lack of blinding of caregivers and short study duration. Conclusions: Adding dairy to LNS has no additional effects on linear growth or body composition in stunted children aged 12 to 59 months. However, supplementation with LNS, irrespective of milk, supports linear catch-up growth and accretion of fat-free mass, but not fat mass. If left untreated, children already on a stunting trajectory gain fat at the expense of fat-free mass, thus nutrition programs to treat such children should be considered

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    An ethical framework for global vaccine allocation

    Get PDF
    In this article, we propose the Fair Priority Model for COVID-19 vaccine distribution, and emphasize three fundamental values we believe should be considered when distributing a COVID-19 vaccine among countries: Benefiting people and limiting harm, prioritizing the disadvantaged, and equal moral concern for all individuals. The Priority Model addresses these values by focusing on mitigating three types of harms caused by COVID-19: death and permanent organ damage, indirect health consequences, such as health care system strain and stress, as well as economic destruction. It proposes proceeding in three phases: the first addresses premature death, the second long-term health issues and economic harms, and the third aims to contain viral transmission fully and restore pre-pandemic activity. To those who may deem an ethical framework irrelevant because of the belief that many countries will pursue "vaccine nationalism," we argue such a framework still has broad relevance. Reasonable national partiality would permit countries to focus on vaccine distribution within their borders up until the rate of transmission is below 1, at which point there would not be sufficient vaccine-preventable harm to justify retaining a vaccine. When a government reaches the limit of national partiality, it should release vaccines for other countries. We also argue against two other recent proposals. Distributing a vaccine proportional to a country's population mistakenly assumes that equality requires treating differently situated countries identically. Prioritizing countries according to the number of front-line health care workers, the proportion of the population over 65, and the number of people with comorbidities within each country may exacerbate disadvantage and end up giving the vaccine in large part to wealthy nations

    Devotions for Lent 2023 Hymns of Lent

    Get PDF
    This Lent, we will continue reflecting on hymns of faith, namely, some of our most beloved Lenten hymns. 10 such hymns have been chosen to fill the 40(+) days of Lent. Therefore, this devotional, different from previous editions, does not proceed on a weekly basis, but merely flows from one hymn to the next. Also different from previous editions, the devotional reflections are specifically based on the stanzas of the selected hymns. Therefore, each day’s reflection features the text of the hymn stanza, a devotion based on that stanza, a prayer, and then a Scripture passage or passages for further meditation. I pray these reflections may be of edification for you during this Lenten season.https://scholar.csl.edu/osp/1022/thumbnail.jp

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 μm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information
    corecore